Calculation Policy

and guidance
2022

	EYFS/ Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition	Combining two parts to make a whole: part whole model. Starting at the bigger number and counting on - using cubes. Regrouping to make 10 using ten frame.	Adding three single digits. Use of base 10 to combine two numbers.	Column method regrouping. Using place value counters (up to 3 digits).	Column method regrouping (up to 4 digits)	Column method regrouping. Use of place value counters for adding decimals.	Column method regrouping. Abstract methods. Place value counters to be used for adding decimal numbers.
Subtraction	Taking away ones Counting back Find the difference Part whote model Make 10 using the ten frame	Counting back Find the difference Part whote model Make 10 Use of base 10	Column method with regrouping. (up to 3 digits using place value counters)	Column method with regrouping. (up to 4 digits)	Column method with regrouping. Abstract for whole numbers. Start with place value counters for decimals - with the same amount of decimal places.	Column method with regrouping. Abstract methods. Place value counters for decimals with different amounts of decimal places.

	EYFS/ Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Multiplication	Recognising and making equal groups. Doubling Counting in multiples. Use cubes, Numicon and other objects in the classroom.	Arrays - showing commutative multiplication.	Arrays 2d $x 1 d$ using base 10	Column multiplication introduced with place value counters. (2 and 3 digit multiplied by 1 digit)	Column multiplication. Abstract only but might need a repeat of Year 4 first (up to 4 digit numbers multiplied by 1 or 2 digits)	Column multiplication. Abstract methods (multi-digit up to 4 digits by a 2 digit number)
Division	Sharing objects into groups. Division as grouping e.g. I have 12 sweets and put them into groups of 3, how many groups? Use cubes and draw round 3 cubes at a time.	Division as grouping. Division within arrays - linking to multiplication. Repeated subtraction.	Division with a remainder - using lollipop sticks, times tables facts and repeated subtraction. 2d divided by $1 d$ using base 10 or place value counters.	Division with a remainder. Short division (up to 3 digits by 1 digit - concrete and pictorial)	Short division. (up to 4 digits by a 1 digit number including remainders)	Short division. Long division with place value counters (up to 4 digits by a 2 digit number) Children should exchange into the tenths and hundredths column too.

Calculation Policy: Addition

Key language: sum, total, parts and whotes, plus, add, altogether, more, 'is equal to', 'is the same as'.

Concrete	Pictorial	Abstract
Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears, cars).	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too. EYFS, Y1, Y2	$4+3=7$ Four is a part, 3 is a part and the whole is seven. EYFS, Y1, Y2, Y3
Counting on using number lines using cubes or Numicon. EYFS, Y1, y2	A bar model which encourages the children to count on, rather than count all. Y1, Y2	The abstract number line: What is 2 more than 4 ? What is the sum of 2 and 4 ? What is the total of 4 and 2? $4+2$ Y1, Y2, Y3

counters/cubes or using Numicon. $6+5$		Children to develop an understanding of equality e.g. $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 y_{2, y_{3}} \end{aligned}$
of partitioning and place value. $41+8$ Y1, Y2, Y3	Children to represent the base 10 e.g. lines for tens and dot/crosses for ones. $y 1, Y 2, Y 3$	$41+8$ $\begin{aligned} & \begin{array}{l} 1+8=9 \\ 40+9=49 \end{array} \\ & +\begin{array}{r} 41 \\ +49 \\ \hline 49 \end{array} \end{aligned}$ Y2. Y3
TO + TO using base 10. Continue to develop understanding of partitioning and place value. $36+25$	to represent the base 10 in a place value chart.	Looking for ways to make 10 .

Calculation Policy: Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease

Calculation Policy: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Calculation Policy: Division

Key language: share, group, divide, divided by, half.

